Supervised Infinite Feature Selection
نویسندگان
چکیده
In this paper, we present a new feature selection method that is suitable for both unsupervised and supervised problems. We build upon the recently proposed Infinite Feature Selection (IFS) method where feature subsets of all sizes (including infinity) are considered. We extend IFS in two ways. First, we propose a supervised version of it. Second, we propose new ways of forming the feature adjacency matrix that perform better for unsupervised problems. We extensively evaluate our methods on many benchmark datasets, including large image-classification datasets (PASCAL VOC), and show that our methods outperform both the IFS and the widely used “minimum-redundancy maximum-relevancy (mRMR)” feature selection algorithm.
منابع مشابه
Machine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملکاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کاملSemi-supervised Feature Selection via Spectral Analysis
Feature selection is an important task in effective data mining. A new challenge to feature selection is the socalled “small labeled-sample problem” in which labeled data is small and unlabeled data is large. The paucity of labeled instances provides insufficient information about the structure of the target concept, and can cause supervised feature selection algorithms to fail. Unsupervised fe...
متن کاملGraph Laplacian for Semi-supervised Feature Selection in Regression Problems
Feature selection is fundamental in many data mining or machine learning applications. Most of the algorithms proposed for this task make the assumption that the data are either supervised or unsupervised, while in practice supervised and unsupervised samples are often simultaneously available. Semi-supervised feature selection is thus needed, and has been studied quite intensively these past f...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1704.02665 شماره
صفحات -
تاریخ انتشار 2017